New publication details a novel method for accelerated mechanical properties prediction! We developed a method that integrates additively manufactured functionally graded materials, automated high resolution measurements, and leverage fundamental relationships between local plasticity and macroscopic properties to rapidly predict the fatigue strength of metallic materials.
Recent improvements in additive manufacturing and high-throughput material synthesis have enabled the discovery of novel metallic materials for extreme environments. However, high-fidelity testing of advanced mechanical properties such as fatigue strength, has often been the most time-consuming and resource-intensive step of material discovery, thereby slowing down the adoption of novel materials. This work presents a new method for rapid characterization of the fatigue properties of many compositions while only testing a single specimen. The approach utilizes high-resolution digital image correlation along with a computer vision model to extract the relationship between localized plastic deformation events and associated mechanical properties. The approach is initially validated on an additive manufactured 316L dataset, then applied to a functionally graded additive manufactured specimen with a composition gradient across the gauge length. This allows for the characterization of multiple compositions, orders of magnitude faster than traditional methods.
https://arxiv.org/abs/2502.13159
